
Introducing Gamut,
a D image library

Meeting
Aug 23th 2022

A long-term goal for the Dplug library.

● Dplug “winter” is nearly over, since Auburn Sounds next plug-in is ready => 6th September

● That means: bug fixes and enhancements for the next six months.

● DConf 2022 happened.

(Dplug news)

dplug:graphics is all based upon a forked
ae.utils.graphics

● Was presented in https://blog.cy.md/2014/03/21/functional-image-processing-in-d/

● Groundbreaking article, served us well (draw ellipses in L16 and RGBA8 with the same code!)

● Top speed.

I used and forked this in 2015
as I thought it would be easy
for you peeps to understand.

The context

https://blog.cy.md/2014/03/21/functional-image-processing-in-d/

Early widgets were complicated to draw

…before the smaller dplug:canvas API became the preferred way to draw widgets.

Therefore, marginalizing the older style of writing to “Voldemort” lazy image chains.

But actually we need something like Cairo

● This kind of open-ended API is best when you don’t know what you will need to compute.

● Plenty of OwnedImage!RGBA, ImageRef!RGBA, toRef(), templates…

● Templates are inherently public and lead to large API surface => bad for learning.

● Pretty sure dplug:graphics is confusing for new and ancient D programmers.

● I’ve fought to make easy things easier in Dplug, and that means less powerful.

Let’s follow the hugely simplifying example of dplug:canvas !

Next step: remake the image basics

● dplug:graphics has pretty good image-loading (fast, low memory, best 4:2:0 quality) in pure D.
○ Important to be able to load and convert to another number of channels at the same time.
○ 16-bit support important for PBR (our “depth” is a “displacement map” in video games parlance).

● dplug:graphics has best image resizing in pure D (fast, low memory, quality)
○ Basically stb_image_resize.d with better kernels (lanczos)

● Make that available to the larger community.

● Plenty of small refactoring steps, will take years.

No more of that

● No more pixel type like !RGBA : this is a runtime type.

● No more ImageRef vs OwnedImage : there is only a single Image type

○ Able to do both

○ Own its data, or borrow it

○ Advanced layout options to replace OwnedImage completely.

● One Image type to Rule Them All

Adding exotic codecs
● QOI, lossless codec invented by Dominic Szablewski, faster than PNG and in some cases smaller

(typically: large transparent overlays). See https://qoiformat.org/

Already supported today in Dplug (use the image converter in Gamut).

http://twitter.com/phoboslab
https://qoiformat.org/

Adding more exotic codecs
● QOIX, a Gamut-specific custom format (no fixed bitstream as of today Aug 2022)

○ uses a better compression scheme than regular QOI (at least QOI2AVG)
○ followed by LZ4 compression
○ Is made of 3 different sub-codecs: QOI2AVG, QOI-Plane, QOI-10b… most good ideas came from

people creating QOI2AVG in https://github.com/nigeltao/qoi2-bikeshed
○ Supports 1/2/3/4 channels in 8-bit and 10-bit.

● In most cases, QOIX win against PNG in decoding speed, memory usage.
○ and in some cases in coding efficiency.
○ QOIX 10-bit is lossy, so it “wins” much more often against expensive 16-bit PNG.
○ QOIX is always smaller than QOI.

● The main usage of QOIX will be 16-bit PBR knobs in Issue #457 (renovating ImageKnob)

Otherwise, each knob may take 200kb).
○ At which point, we will have rotating PBR knobs with proper depth, enabling very pretty knobs.

https://github.com/nigeltao/qoi2-bikeshed

Consider this
UIImageKnob
used as Attack knob
in Renegate plug-in.

Example 1: 8-bit image knob

800 x 550 8-bit knob image.

● as 16-bit PNG => 94.2 kb
● as 10-bit QOIX => 90.6 kb
● as 8-bit PNG => 75.6 kb
● as 8-bit QOIX => 70.3 kb

Decodes in 1.05 ms instead of 2.67 ms (8-bit, see examples/qoix in Gamut repo).

Encodes 10x faster than PNG.

Example 1: 8-bit image knob

This 800 x 550 8-bit overlay in Auburn
Sounds next plugin:

● as 16-bit PNG => 1343 kb (!)
● as 10-bit QOIX => 441 kb
● as 8-bit PNG => 156 kb
● as 8-bit QOIX => 174 kb
● as 8-bit QOI => 252 kb

Likewise, faster encoding and decoding in QOIX.
(QOI is even faster).

Example 2: 8-bit transparent overlay

Mystery plug-in to be
released September 6th

This 768 x 384 10-bit knob will enable
better textured rotating knobs.

● as 16-bit PNG => 467 kb
● as 10-bit QOIX => 193 kb (lossy!)

Also, faster encoding and decoding in QOIX.

Example 3: 10-bit UIImageKnob of the future

The future UIImageKnob format.
Row 1 = Rotating Diffuse / Depth / Material / Emissive
Row 2 = Same but without rotation.
TODO: do something for clicked/hovered/focused/disabled.

PNG
QOIX

The hope is that 10-bit is enough for elevation.

 diffuse depth material emissive

Future endeavours?

● Actually finish Gamut and start using it in Dplug.

● (Why not) Keeping QOI-encoded backgrounds in memory instead of
decoding them from JPG on resize.

● (Why not) Programmatic screenshots.

Questions?

